Programming with Python

Analyzing Climate Data

Overview

Teaching: 30 min
Exercises: 0 min
Questions
  • How can I process tabular data files in Python?

Objectives
  • Explain what a library is, and what libraries are used for.

  • Import a Python library and use the things it contains.

  • Read tabular data from a file into a program.

  • Assign values to variables.

  • Select individual values and subsections from data.

  • Perform operations on arrays of data.

  • Display simple graphs.

Words are useful, but what’s more useful are the sentences and stories we build with them. Similarly, while a lot of powerful, general tools are built into languages like Python, specialized tools built up from these basic units live in libraries that can be called upon when needed.

In order to load our data, we need to access (import in Python terminology) a library called NumPy. In general you should use this library if you want to do fancy things with numbers, especially if you have matrices or arrays. We can import NumPy using:

import numpy

Importing a library is like getting a piece of lab equipment out of a storage locker and setting it up on the bench. Libraries provide additional functionality to the basic Python package, much like a new piece of equipment adds functionality to a lab space. Once you’ve imported the library, we can ask the library to read our data file for us:

numpy.loadtxt(fname='CAN.csv', delimiter=',', skiprows=1)
array([[ 1901.        ,    -7.67241907,    37.44835281],
       [ 1902.        ,    -7.86271143,    38.25142288],
       [ 1903.        ,    -7.91078281,    37.5530014 ],
       [ 1904.        ,    -8.15572929,    37.35193253],
       [ 1905.        ,    -7.54731131,    37.51586914],
       [ 1906.        ,    -7.68410349,    37.51700592],
       [ 1907.        ,    -8.41355324,    36.76292038],
       [ 1908.        ,    -7.79092932,    36.40164948],
       [ 1909.        ,    -8.2393055 ,    36.98836136],
       [ 1910.        ,    -7.77461147,    36.27269745],
       [ 1911.        ,    -8.11444664,    35.95967865],

The expression numpy.loadtxt(...) is a function call that asks Python to run the function loadtxt which belongs to the numpy library. This dotted notation is used everywhere in Python to refer to the parts of things as thing.component.

numpy.loadtxt has two parameters: the name of the file we want to read, and the delimiter that separates values on a line. These both need to be character strings (or strings for short), so we put them in quotes.

When we are finished typing and press Shift+Enter, the notebook runs our command. Since we haven’t told it to do anything else with the function’s output, the notebook displays it. In this case, that output is the data we just loaded. By default, only a few rows and columns are shown (with ... to omit elements when displaying big arrays). To save space, Python displays numbers as 1. instead of 1.0 when there’s nothing interesting after the decimal point.

Our call to numpy.loadtxt read our file, but didn’t save the data in memory. To do that, we need to assign the array to a variable. A variable is just a name for a value, such as x, current_temperature, or subject_id. Python’s variables must begin with a letter and are case sensitive. We can create a new variable by assigning a value to it using =. As an illustration, let’s step back and instead of considering a table of data, consider the simplest “collection” of data, a single value. The line below assigns the value 55 to a variable weight_kg:

weight_kg = 55

Once a variable has a value, we can print it to the screen:

print(weight_kg)
55

and do arithmetic with it:

print('weight in pounds:', 2.2 * weight_kg)
weight in pounds: 121.0

As the example above shows, we can print several things at once by separating them with commas.

We can also change a variable’s value by assigning it a new one:

weight_kg = 57.5
print('weight in kilograms is now:', weight_kg)
weight in kilograms is now: 57.5

If we imagine the variable as a sticky note with a name written on it, assignment is like putting the sticky note on a particular value:

Variables as Sticky Notes

This means that assigning a value to one variable does not change the values of other variables. For example, let’s store the subject’s weight in pounds in a variable:

weight_lb = 2.2 * weight_kg
print('weight in kilograms:', weight_kg, 'and in pounds:', weight_lb)
weight in kilograms: 57.5 and in pounds: 126.5

Creating Another Variable

and then change weight_kg:

weight_kg = 100.0
print('weight in kilograms is now:', weight_kg, 'and weight in pounds is still:', weight_lb)
weight in kilograms is now: 100.0 and weight in pounds is still: 126.5

Updating a Variable

Since weight_lb doesn’t “remember” where its value came from, it isn’t automatically updated when weight_kg changes. This is different from the way spreadsheets work.

Who’s Who in Memory

You can use the %whos command at any time to see what variables you have created and what modules you have loaded into the computer’s memory. As this is an IPython command, it will only work if you are in an IPython terminal or the Jupyter Notebook.

%whos
Variable    Type       Data/Info
--------------------------------
numpy       module     <module 'numpy' from '/Us<...>kages/numpy/__init__.py'>
weight_kg   float      100.0
weight_lb   float      126.5

Just as we can assign a single value to a variable, we can also assign an array of values to a variable using the same syntax. Let’s re-run numpy.loadtxt and save its result:

numpy.loadtxt(fname='CAN.csv', delimiter=',', skiprows=1)

This statement doesn’t produce any output because assignment doesn’t display anything. If we want to check that our data has been loaded, we can print the variable’s value:

print(data)
	  [[ 1901.        ,    -7.67241907,    37.44835281],
       [ 1902.        ,    -7.86271143,    38.25142288],
       [ 1903.        ,    -7.91078281,    37.5530014 ],
       [ 1904.        ,    -8.15572929,    37.35193253],
       [ 1905.        ,    -7.54731131,    37.51586914],
       [ 1906.        ,    -7.68410349,    37.51700592],
       [ 1907.        ,    -8.41355324,    36.76292038],
       [ 1908.        ,    -7.79092932,    36.40164948],
       [ 1909.        ,    -8.2393055 ,    36.98836136],
       [ 1910.        ,    -7.77461147,    36.27269745],
       [ 1911.        ,    -8.11444664,    35.95967865],

Now that our data is in memory, we can start doing things with it. First, let’s ask what type of thing data refers to:

print(type(data))
<class 'numpy.ndarray'>

The output tells us that data currently refers to an N-dimensional array created by the NumPy library. These data correspond to annual measurements of average temperature (in Celsius) and precipitation (in millimetres) by country. We are currently looking at the data for Canada.

Data Type

A Numpy array contains one or more elements of the same type. type will only tell you that a variable is a NumPy array. We can also find out the type of the data contained in the NumPy array.

print(data.dtype)
dtype('float64')

This tells us that the NumPy array’s elements are floating-point numbers.

We can see what the array’s shape is like this:

print(data.shape)
(112, 3)

This tells us that data has 112 rows and 3 columns. When we created the variable data to store our climate data, we didn’t just create the array, we also created information about the array, called members or attributes. This extra information describes data in the same way an adjective describes a noun. data.shape is an attribute of data which describes the dimensions of data. We use the same dotted notation for the attributes of variables that we use for the functions in libraries because they have the same part-and-whole relationship.

If we want to get a single number from the array, we must provide an index in square brackets, just as we do in math:

print('first value in data:', data[0, 0])
first value in data: 1901.0
print('middle value in data:', data[56, 1])
middle value in data: -7.763300896

The expression data[56, 1] may not surprise you, but data[0, 0] might. Programming languages like Fortran and MATLAB start counting at 1, because that’s what human beings have done for thousands of years. Languages in the C family (including C++, Java, Perl, and Python) count from 0 because that’s more convenient when indices are computed rather than constant (see Mike Hoye’s blog post for historical details). As a result, if we have an M×N array in Python, its indices go from 0 to M-1 on the first axis and 0 to N-1 on the second. It takes a bit of getting used to, but one way to remember the rule is that the index is how many steps we have to take from the start to get the item we want.

In the Corner

What may also surprise you is that when Python displays an array, it shows the element with index [0, 0] in the upper left corner rather than the lower left. This is consistent with the way mathematicians draw matrices, but different from the Cartesian coordinates. The indices are (row, column) instead of (column, row) for the same reason, which can be confusing when plotting data.

An index like [56, 1] selects a single element of an array, but we can select whole sections as well. For example, we can select the first ten years (rows) of values for the temperature (second column) like this:

print(data[0:10, 1])
[-7.67241907 -7.86271143 -7.91078281 -8.15572929 -7.54731131 -7.68410349
 -8.41355324 -7.79092932 -8.2393055  -7.77461147]

The slice 0:10 means, “Start at index 0 and go up to, but not including, index 10.” Again, the up-to-but-not-including takes a bit of getting used to, but the rule is that the difference between the upper and lower bounds is the number of values in the slice.

We don’t have to start slices at 0:

print(data[5:10], data[1:3])
[[ -7.68410349  37.51700592]
 [ -8.41355324  36.76292038]
 [ -7.79092932  36.40164948]
 [ -8.2393055   36.98836136]
 [ -7.77461147  36.27269745]]

We also don’t have to include the upper and lower bound on the slice. If we don’t include the lower bound, Python uses 0 by default; if we don’t include the upper, the slice runs to the end of the axis, and if we don’t include either (i.e., if we just use ‘:’ on its own), the slice includes everything:

small = data[:3, :]
print('small is:')
print(small)
small is:
[[ 1901.            -7.67241907    37.44835281]
 [ 1902.            -7.86271143    38.25142288]
 [ 1903.            -7.91078281    37.5530014 ]]

Arrays also know how to perform common mathematical operations on their values. The simplest operations with data are arithmetic: add, subtract, multiply, and divide. When you do such operations on arrays, the operation is done on each individual element of the array. Thus:

doubledata = data * 2.0

will create a new array doubledata whose elements have the value of two times the value of the corresponding elements in data:

print('original:')
print(data[:3, :])
print('doubledata:')
print(doubledata[:3, :])
original:
[[ 1901.            -7.67241907    37.44835281]
 [ 1902.            -7.86271143    38.25142288]
 [ 1903.            -7.91078281    37.5530014 ]]
doubledata:
[[ 3802.           -15.34483814    74.89670562]
 [ 3804.           -15.72542286    76.50284576]
 [ 3806.           -15.82156563    75.1060028 ]]

If, instead of taking an array and doing arithmetic with a single value (as above) you did the arithmetic operation with another array of the same shape, the operation will be done on corresponding elements of the two arrays. Thus:

tripledata = doubledata + data

will give you an array where tripledata[0,0] will equal doubledata[0,0] plus data[0,0], and so on for all other elements of the arrays.

print('tripledata:')
print(tripledata[:3, :])
tripledata:
[[ 5703.           -23.01725721   112.34505843]
 [ 5706.           -23.58813429   114.75426864]
 [ 5709.           -23.73234844   112.6590042 ]]

Often, we want to do more than add, subtract, multiply, and divide values of data. NumPy knows how to do more complex operations on arrays. If we want to find the average temperature across all years, for example, we can ask NumPy to compute that column’s mean value:

print(numpy.mean(data[:, 1]))
-7.42467926652

mean is a function that takes an array as an argument. If variables are nouns, functions are verbs: they do things with variables.

Not All Functions Have Input

Generally, a function uses inputs to produce outputs. However, some functions produce outputs without needing any input. For example, checking the current time doesn’t require any input.

import time
print(time.ctime())
'Sat Mar 26 13:07:33 2016'

For functions that don’t take in any arguments, we still need parentheses (()) to tell Python to go and do something for us.

NumPy has lots of useful functions that take an array as input. Let’s use three of those functions to get some descriptive values about the dataset. We’ll also use multiple assignment, a convenient Python feature that will enable us to do this all in one line.

temp = data[:, 1]
maxval, minval, stdval = numpy.max(temp), numpy.min(temp), numpy.std(temp)

print('maximum temperature:', maxval)
print('minimum temperature:', minval)
print('standard deviation:', stdval)
maximum temperature: -4.703649521
minimum temperature: -9.525187492
standard deviation: 0.77853048975

Mystery Functions in IPython

How did we know what functions NumPy has and how to use them? If you are working in the IPython/Jupyter Notebook there is an easy way to find out. If you type the name of something with a full-stop then you can use tab completion (e.g. type numpy. and then press tab) to see a list of all functions and attributes that you can use. After selecting one you can also add a question mark (e.g. numpy.cumprod?) and IPython will return an explanation of the method! This is the same as doing help(numpy.cumprod).

We can also compute a column-wise or row-wise mean:

print(numpy.mean(data, axis=0))
[ 1956.5           -7.42467927    36.63399274]

This also includes the average year, which is not that interesting. We can use slicing to remove it, either before or after taking the mean.

# don't show the average year
print(numpy.mean(data[:,1:], axis=0))
print(numpy.mean(data, axis=0)[1:])

Everything in a line of code following the ‘#’ symbol is a comment that is ignored by the computer. Comments allow programmers to leave explanatory notes for other programmers or their future selves.

It’s easy to forget whether to use axis=0 or axis=1. As a quick check, we can ask this array what its shape is:

print(numpy.mean(data, axis=1).shape)
(112,)

The expression (112,) tells us we have an N×1 vector. Comparing with the original shape of data, this suggests this is the average of year, temperature and precipitation on each row, which is not what we want. We can tell axis=0 is right just by its shape:

print(numpy.mean(data, axis=0).shape)
(3,)

The mathematician Richard Hamming once said, “The purpose of computing is insight, not numbers,” and the best way to develop insight is often to visualize data. Visualization deserves an entire lecture (of course) of its own, but we can explore a few features of Python’s matplotlib library here. While there is no “official” plotting library, this package is the de facto standard. First, we will import the pyplot module from matplotlib and use two of its functions to create and display a time series of the temperature:

import matplotlib.pyplot as plt
plt.plot(data[:,0], data[:,1])
plt.show()

Note that when importing pyplot, we renamed it to plt with the as keyword. This saves us from typing matplotlib.pyplot. every time, and is a very common convention.

Annual temperatures in Canada

As we can see, the average temperature has been slowly increasing over the years.

Some IPython Magic

If you’re using an IPython / Jupyter notebook, you’ll need to execute the following command in order for your matplotlib images to appear in the notebook when show() is called:

% matplotlib inline

The % indicates an IPython magic function - a function that is only valid within the notebook environment. Note that you only have to execute this function once per notebook.

Let’s take a look at the average precipitation over time:

plt.plot(data[:,0], data[:,2])
matplotlib.pyplot.show()

Annual precipitation in Canada

You can group similar plots in a single figure using subplots. This script below uses a number of new commands. The function matplotlib.pyplot.figure() creates a space into which we will place all of our plots. The parameter figsize tells Python how big to make this space. Each subplot is placed into the figure using its add_subplot method. The add_subplot method takes 3 parameters. The first denotes how many total rows of subplots there are, the second parameter refers to the total number of subplot columns, and the final parameter denotes which subplot your variable is referencing (left-to-right, top-to-bottom). Each subplot is stored in a different variable (axes1, axes2). Once a subplot is created, the axes can be titled using the set_xlabel() command (or set_ylabel()). Here are our two plots side by side:

import numpy
import matplotlib.pyplot as plt

data = numpy.loadtxt(fname='CAN.csv', delimiter=',', skiprows=1)

fig = plt.figure(figsize=(10.0, 4.0))

axes1 = fig.add_subplot(1, 2, 1)
axes2 = fig.add_subplot(1, 2, 2)

axes1.set_ylabel('Temperature (C)')
axes1.plot(data[:,0], data[:,1])

axes2.set_ylabel('Precipitation (mm)')
axes2.plot(data[:,0], data[:,2])

fig.tight_layout()

plt.show()

The Previous Plots as Subplots

The call to loadtxt reads our data, and the rest of the program tells the plotting library how large we want the figure to be, that we’re creating two subplots, what to draw for each one, and that we want a tight layout. (Perversely, if we leave out that call to fig.tight_layout(), the graphs will actually be squeezed together more closely.)

Scientists Dislike Typing

We will always use the syntax import numpy to import NumPy. However, in order to save typing, it is often suggested to make a shortcut like so: import numpy as np. If you ever see Python code online using a NumPy function with np (for example, np.loadtxt(...)), it’s because they’ve used this shortcut.

Check Your Understanding

Draw diagrams showing what variables refer to what values after each statement in the following program:

mass = 47.5
age = 122
mass = mass * 2.0
age = age - 20

Sorting Out References

What does the following program print out?

first, second = 'Grace', 'Hopper'
third, fourth = second, first
print(third, fourth)

Solution

Hopper Grace

Slicing Strings

A section of an array is called a slice. We can take slices of character strings as well:

element = 'oxygen'
print('first three characters:', element[0:3])
print('last three characters:', element[3:6])
first three characters: oxy
last three characters: gen

What is the value of element[:4]? What about element[4:]? Or element[:]?

Solution

oxyg
en
oxygen

What is element[-1]? What is element[-2]?

Solution

n
e

Given those answers, explain what element[1:-1] does.

Solution

Creates a substring from index 1 up to (not including) the final index, effectively removing the first and last letters from ‘oxygen’

Thin Slices

The expression element[3:3] produces an empty string, i.e., a string that contains no characters. If data holds our array of data, what does data[3:3, 0:0] produce? What about data[3:3, :]?

Solution

[]
[]

Moving Plots Around

Modify the program to display the two plots on top of one another instead of side by side.

Solution

import numpy
import matplotlib.pyplot as plt

data = numpy.loadtxt(fname='CAN.csv', delimiter=',', skiprows=1)

# change figsize (swap width and height)
fig = plt.figure(figsize=(4.0, 10.0))

# change add_subplot (swap first two parameters)
axes1 = fig.add_subplot(2, 1, 1)
axes2 = fig.add_subplot(2, 1, 2)

axes1.set_ylabel('Temperature (C)')
axes1.plot(data[:,0], data[:,1])

axes2.set_ylabel('Precipitation (mm)')
axes2.plot(data[:,0], data[:,2])

fig.tight_layout()

plt.show()

Stacking Arrays

Arrays can be concatenated and stacked on top of one another, using NumPy’s vstack and hstack functions for vertical and horizontal stacking, respectively.

import numpy

A = numpy.array([[1,2,3], [4,5,6], [7, 8, 9]])
print('A = ')
print(A)

B = numpy.hstack([A, A])
print('B = ')
print(B)

C = numpy.vstack([A, A])
print('C = ')
print(C)
A =
[[1 2 3]
 [4 5 6]
 [7 8 9]]
B =
[[1 2 3 1 2 3]
 [4 5 6 4 5 6]
 [7 8 9 7 8 9]]
C =
[[1 2 3]
 [4 5 6]
 [7 8 9]
 [1 2 3]
 [4 5 6]
 [7 8 9]]

Write some additional code that slices the first and last columns of A, and stacks them into a 3x2 array. Make sure to print the results to verify your solution.

Key Points